
- **Aufgabe 1:** a) Konstruiere über der Sehne $\overline{AB} = 7.4$ cm den Kreisbogen mit dem **Mittelpunktswinkel** $\varepsilon = 100^{\circ}$.
 - **b)** Konstruiere über der Sehne $\overline{AB} = 4.2$ cm den Kreisbogen mit dem **Umfangswinkel** $\gamma = 25^{\circ}$.
 - c) Konstruiere über der Sehne $\overline{AB} = 6$ cm den Kreisbogen mit dem Umfangswinkel $\gamma = 90^{\circ}$.
- **Aufgabe 2:** Konstruiere ein Dreieck aus den angegebenen Stücken. Zeichne jeweils eine Planfigur!
 - a) a = 5.5 cm; $\beta = 113^{\circ}$; $w_{\beta} = 2.7 \text{ cm}$
 - **b)** r = 3 cm (Umkreis); a = 2.5 cm; b = 4 cm
 - c) $h_c = 4.2 \text{ cm}$; a = 4.4 cm; b = 4.6 cm
 - **d)** a = 7 cm; c = 6.4 cm; $s_c = 5 \text{ cm}$
- **Aufgabe 3: a)** Zeichne eine Gerade g und einen Punkt A, der nicht auf g liegt. Konstruiere dann den Kreis um A, der g als Tangente besitzt.
 - **b**) Zeichne einen Punkt B außerhalb des Kreises um A. Konstruiere dann durch B eine Gerade h derart, dass A sowohl von g als auch von h denselben Abstand hat.
- **Aufgabe 4:** Zeichne ein Rechteck mit den Seiten $\overline{AB} = 6$ cm und $\overline{BC} = 4$ cm. Konstruiere den Punkt P, von dem aus man beide Rechtecksseiten im Winkel von 20° sehen kann.
- Aufgabe 5: Zeichne irgendein Dreieck ABC. Zeichne die Seitenhalbierende s_b und bezeichne den Schnittpunkt zwischen s_b und der Seite b mit M (siehe Figur).

 Begründe nun: Die Höhe h_a im Dreieck ABM und die Höhe h_c im Dreieck BCM sind gleich lang.

Hinweis: Nutze den SWW-Satz aus.

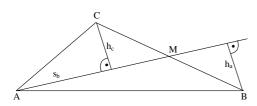
Viel Erfolg!

GRUPPE **B**

Aufgabe 1: a) Konstruiere über der Sehne $\overline{AB} = 4.2$ cm den Kreisbogen mit dem **Umfangswinkel** $\gamma = 25^{\circ}$.

- **b**) Konstruiere über der Sehne $\overline{AB} = 7.4$ cm den Kreisbogen mit dem **Mittelpunktswinkel** $\varepsilon = 100^{\circ}$.
- c) Konstruiere über der Sehne $\overline{AB} = 6$ cm den Kreisbogen mit dem Umfangswinkel $\gamma = 90^{\circ}$.

Aufgabe 2: Konstruiere ein Dreieck aus den angegebenen Stücken. Zeichne jeweils eine Planfigur!


- a) $h_c = 4.2 \text{ cm}$; a = 4.4 cm; b = 4.6 cm
- **b**) a = 7 cm; c = 6.4 cm; $s_c = 5 \text{ cm}$
- c) a = 5.5 cm; $\beta = 113^{\circ}$; $w_{\beta} = 2.7 \text{ cm}$
- **d)** r = 3 cm (Umkreis); a = 2.5 cm; b = 4 cm

Aufgabe 3: a) Zeichne eine Gerade g und einen Punkt A, der nicht auf g liegt. Konstruiere dann den Kreis um A, der g als Tangente besitzt.

b) Zeichne einen Punkt B außerhalb des Kreises um A. Konstruiere dann durch B eine Gerade h derart, dass A sowohl von g als auch von h denselben Abstand hat.

Aufgabe 4: Zeichne ein Rechteck mit den Seiten $\overline{AB} = 4$ cm und $\overline{BC} = 6$ cm. Konstruiere den Punkt P, von dem aus man beide Rechtecksseiten im Winkel von 20° sehen kann.

Aufgabe 5: Zeichne irgendein Dreieck ABC. Zeichne die Seitenhalbierende s_b und

bezeichne den Schnittpunkt zwischen s_b und der Seite b mit M (siehe Figur).

Begründe nun: Die Höhe h_a im Dreieck ABM und die Höhe h_c im Dreieck BCM sind gleich lang.

Hinweis: Nutze den SWW-Satz aus.

Viel Erfolg!